WWW.NAUKA.X-PDF.RU
БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Книги, издания, публикации
 

Pages:   || 2 |

«THE CONCEPT OF THE EVOLUTION OF THE UNIVERSE Nikitina Yu.E., Otreznaya A.A., Kobyakova T.I., Frenkel` E.E. Military Institute of material support, Volsk Saratov region., Russia Введение ...»

-- [ Страница 1 ] --

КОНЦЕПЦИИ ЭВОЛЮЦИИ ВСЕЛЕННОЙ

Никитина Ю.Е., Отрезная А.А., Кобякова Т.И., Френкель Е.Э.

Вольский военный институт материального обеспечения,

Вольск Саратовской обл., Россия

THE CONCEPT OF THE EVOLUTION OF THE UNIVERSE

Nikitina Yu.E., Otreznaya A.A., Kobyakova T.I., Frenkel` E.E.

Military Institute of material support,

Volsk Saratov region., Russia

Введение



1. Сущность концепции развития

2. Современная космологическая картина мира и модели Вселенной

3. Эволюция Вселенной

5. Галактики. Эволюции галактик.

6. Эволюция звезд

7. Средства наблюдения объектов вселенной

8. Проблема поиска внеземных цивилизаций

9. Солнечная система. Солнце Заключение Список использованной литературы Введение Современная система образования направлена на формирование высокообразованной, интеллектуально развитой личности с целостным представлением картины мира, с пониманием глубины связей явлений и процессов, представляющих данную картину.

Дисциплина «Концепции современного естествознания» рассматривает актуальные проблемы и новейшие тенденции развития современного естествознания, объединяя такие научные дисциплины как физика, химия, космология, биология, экология, философия.

Создание у курсантов целостного представления об окружающем мире – это цель обучения данной дисциплины. Интеграция должна дать обучаемому те же знания, которые отражают связанность отдельных частей мира как системы, научить представлять мир как единое целое, в котором все элементы взаимосвязаны, способствовать созданию целостности мировосприятия – единства мира и человека, живущего в нм и познающего его, единство земли и космоса, природы и человека.

Мир, Земля, Космос, Вселенная… Тысячелетиями пытливое человечество обращало свои взгляды на окружающий мир, стремилось постигнуть его, вырваться за пределы микромира в макромир.

Величественная картина небесного купола, усеянного мириадами звезд, с незапамятных звезд волновала ум и воображение ученых, поэтов, каждого живущего на Земле и зачарованного любующегося торжественной и чудной картиной.

Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры.

Зарождение и эволюция жизни на земле является лишь ничтожным звеном в эволюции Вселенной.

И всё же исследования, проведенные в нашем веке, приоткрыли занавес, закрывающий от нас далекое прошлое.

Современные астрономические наблюдения свидетельствуют о том, что началом Вселенной, приблизительно десять миллиардов лет назад, был гигантский огненный шар, раскаленный и плотный. Его состав весьма прост.

Этот огненный шар был на столько раскален, что состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь, друг с другом.

На протяжении десяти миллиардов лет после “Большого Взрыва” простейшеебесформенное вещество постепенно превращалось в атомы, молекулы, кристаллы, породы, планеты. Рождались звезды, системы, состоящие из огромного количества элементарных частиц с весьма простой организацией. На некоторых планетах могли возникнуть формы жизни.

1. Сущность концепции развития

Самоорганизация систем. В последние десятилетия утверждается мнение:

материи изначально присуща тенденция не только к разрушению упорядоченности и возврату к исходному хаосу, но и к образованию сложных и упорядоченных систем разного уровня. Разрушительную тенденцию материи наиболее полно отражают статистическая механика и термодинамика, описывающие свойства изолированных (замкнутых) систем, т.е. систем, не обменивающихся ни энергией, ни веществом с окружающей средой. При этом особая роль принадлежит второму началу термодинамики, определяющему необратимость процессов преобразования энергии в замкнутой системе. Такие процессы рано или поздно приводят систему к ее самому простому состоянию – термодинамическому равновесию, эквивалентному хаосу – состоянию без какой-либо упорядоченности. В прошлом обсуждалась возможность приложения второго начала термодинамики к Вселенной как замкнутой системе и при этом сделан вывод о деградации Вселенной – ее тепловой смерти.

Известно, что все реальные системы, от самых малых до самых больших, являются открытыми – они обмениваются энергией и веществом с окружающей средой и не находятся в состоянии термодинамического равновесия. В подобных системах возможно образование нарастающей упорядоченности, т. е.





самоорганизация материальных систем.

Самоорганизацией принято называть природные скачкообразные процессы, переводящие открытую неравновесную систему, достигшую в своем развитии критического состояния, в новое устойчивое состояние с более высоким уровнем сложности и упорядоченности. Критическое состояние характеризуется крайней неустойчивостью, завершающей плавное эволюционное развитие открытой неравновесной системы.

Исследование самоорганизации проводится в трех направлениях:

синергетика, термодинамика неравновесных процессов и математическая теория катастроф.

Синергетика изучает связи между элементами (подсистемами) структуры, которые образуются в открытых системах (биологических, физико-химических и др.) благодаря интенсивному обмену веществом и энергией с окружающей средой в неравновесных условиях. В открытых системах возможно согласованное поведение подсистем, в результате чего возрастает степень упорядоченности – уменьшается энтропия. Основа синергетики – термодинамика неравновесных процессов, теория случайных процессов, теория нелинейных колебаний и волн.

Объект изучения синергетики, независимо от его природы, должен удовлетворять трем условиям: открытости, существенной неравновесности и скачкообразному выходу из критического состояния.

Открытость означает незамкнутость системы, для которой возможен обмен энергией и веществом с окружающей средой. Существенная неравновесность приводит к критическому состоянию, сопровождающемуся потерей устойчивости системы. В результате скачкообразного выхода из критического состояния образуется качественно новое состояние с более высоким уровнем упорядоченности.

Характерный пример самоорганизующейся системы – оптический квантовый генератор – лазер. При его работе выполняются три перечисленных условия: открытость системы, снабжаемой извне энергией, ее сугубая неравновесность, достижение критического уровня накачки, при котором возникает упорядоченное, монохроматическое излучение.

«Повсюду, куда ни посмотри, обнаруживается эволюция, разнообразие форм и неустойчивости».

Сложная неравновесная система может перейти из неустойчивого состояния в одно из нескольких устойчивых. В какое именно из них совершится переход – дело случая. В системе, пребывающей в критическом состоянии, развиваются сильные флуктуации, и одна из них инициирует скачок в конкретное устойчивое состояние. Процесс скачка необратим. Критическая точка, в которой наиболее вероятен переход в новое состояние, называется точкой бифуркации.

Самоорганизация включает закономерное и случайное в развитии любых открытых систем: плавную эволюцию, ход которой закономерен и детерминирован, и случайный скачок в точке бифуркации, определяющий следующий закономерный этап развития. Важнейшее направление исследования самоорганизации – математическая теория катастроф. Она описывает различные скачкообразные переходы, спонтанные качественные изменения и т.п. В теории катастроф применяется довольно сложный математический аппарат – топологическая теория динамических систем.

В процессе развития способность систем к усложнению приводит к образованию упорядоченных структур – происходит самоорганизация систем.

При этом действуют два взаимно противоположных механизма: объединение элементов системы и ее разделение (фракционирование), – характерные для всех уровней сложности и упорядоченности материи, начиная от микромира и кончая крупномасштабными структурами Вселенной. На разных уровнях развития систем преобладает один из четырех видов фундаментальных взаимодействий. Так, на нуклонном уровне организации материи сильное взаимодействие выступает в роли ядерных сил, объединяющих нуклоны в ядра, а слабое взаимодействие – в роли сил, определяющих их радиоактивный распад. На атомном уровне функции объединения и фракционирования выполняет электромагнитное взаимодействие в форме притяжения разноименных и отталкивания одноименных электрических зарядов. На молекулярном уровне электромагнитное взаимодействие обеспечивает химическую связь. В организации структур Вселенной определяющую роль играет гравитационное взаимодействие.

Особую роль в самоорганизации на завершающей стадии эволюции играет случайность. Именно случайность определяет возможность перехода системы в более упорядоченное состояние. Можно привести множество примеров, когда случайные переходы хотя в принципе возможны, т.е. вероятность их не равна нулю, но настолько мала, что их достижение можно считать практически не реализуемым. Например, вероятность процесса сборки часов из случайно разбросанных деталей отлична от нуля, однако трудно представить, что из деталей без вмешательства человека случайно образуется упорядоченная структура – часы. В этой связи полезно помнить, что концепция самоорганизации и синергетический подход, как и многие другие концепции, идеи и даже фундаментальные законы, имеют вполне определенную область применения.

3. Современная космологическая картина мира и модели Вселенной.

Вселенная (Универсум) – это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Часть Вселенной, охваченная астрономическими наблюдениями, называется

Метагалактикой, или нашей Вселенной. Размеры Метагалактики очень велики:

радиус космологического горизонта составляет ~ 20 млрд световых лет.

Строение и эволюция Вселенной изучаются космологией. Космология – один из тех разделов естествознания, которые по своему существу всегда находятся на стыке наук. Космология – это междисциплинарная наука, она использует достижения и методы физики, математики, философии. Предмет космологии – весь окружающий нас Мегамир, вся «большая Вселенная», ее задача состоит в описании наиболее общих свойств, строения и эволюции Вселенной. С эволюцией структуры Вселенной связано возникновение скоплений галактик, обособление и формирование звезд и галактик, образование планет и их спутников. Сама Вселенная возникла примерно 20 млрд лет тому назад из некоего плотного и горячего протовещества. Существует точка зрения, что с самого начала протовещество с гигантской скоростью начало расширяться. На начальной стадии это плотное вещество разлеталось во всех направлениях и представляло собой однородную бурлящую смесь неустойчивых, постоянно распадающихся при столкновениях частиц. Остывая, и взаимодействуя на протяжении миллионов лет, вся эта масса рассеянного в пространстве вещества, концентрировалась в большие и малые газовые образования, которые в течение сотен миллионов лет, сближаясь и сливаясь, превращались в громадные комплексы. В них в свою очередь возникали более плотные участки – там впоследствии и образовались звезды и даже целые галактики.

Предположительно, в результате гравитационной нестабильности в разных зонах образовавшихся галактик смогли сформироваться плотные «протозвездные образования» с массами, близкими к массе Солнца.

Начавшийся процесс сжатия ускорился под влиянием собственного поля тяготения. Процесс этот сопровождается свободным падением частиц облака к его центру – происходит гравитационное сжатие. В центре облака образуется уплотнение, состоящее из молекулярного водорода и гелия. Возрастание плотности и температуры в центре приводит к распаду молекул на атомы, ионизации атомов и образованию плотного ядра протозвезды.

Конечна или бесконечна Вселенная, какая у нее геометрия – эти и многие другие вопросы связаны с эволюцией Вселенной, в частности с наблюдаемым расширением. Если, как это считают в настоящее время, скорость «разлета»

галактик увеличится на 75 км/с на каждый миллион парсек, то экстраполяция к прошлому приводит к удивительному результату: примерно 10–20 млрд лет назад вся Вселенная была сосредоточена в очень маленькой области. Многие ученые считают, что в то время плотность Вселенной была такая же, как у атомного ядра. Проще говоря, Вселенная тогда представляла собой одну гигантскую «ядерную каплю». По каким-то причинам эта «капля» пришла в неустойчивое состояние и взорвалась. Такой процесс называется Большим взрывом.

4. Эволюция Вселенной.

Эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную. Но раскроем мы только звездную эру эволюции Вселенной.

Звездная эра.

После “большого взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “большого взрыва” (приблизительно 300 000 лет) до наших дней. По сравнению с периодом “большим взрыва” её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры. Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной.

Взрыв суперновой или гигантский взрыв галактики - ничтожные явления в сравнении с большим взрывом.

Образование объектов Вселенной. В 1963 г. на очень больших расстояниях от нашей Галактики, на границе наблюдаемой Вселенной, обнаружены удивительные объекты, получившие название квазаров. При сравнительно небольших размерах (поперечник их составляет несколько световых недель или месяцев) квазары выделяют колоссальную энергию, примерно в 100 раз превосходящую энергию излучения самых гигантских галактик, состоящих из десятков и сотен миллиардов звезд. Какие физические процессы могут приводить к выделению столь грандиозного количества энергии, пока неясно.

Астрономы обратили внимание на определенное сходство между квазарами и активными ядрами некоторых галактик. Квазары – весьма удаленные объекты. А чем дальше от нас находится тот или иной космический объект, тем в более отдаленном прошлом мы его наблюдаем, что обусловливается конечной скоростью распространения электромагнитного излучения, в том числе и света. Хотя скорость света велика – около 300 тыс.

км/с, но даже при такой огромной скорости для преодоления космических расстояний необходимы десятки, сотни и даже миллиарды лет. Мы наблюдаем объекты Вселенной – Солнце, планеты, звезды, галактики – в прошлом. Причем различные объекты – в разном прошлом. Например, Полярную звезду – такой, какой она была около шести веков назад. А галактику в созвездии Андромеды мы наблюдаем с опозданием на 2 млн лет.

Вопрос об образовании космических объектов в результате нестационарных процессов и о самоорганизации Вселенной еще окончательно не решен. Кроме того, одна из важных проблем современного естествознания состоит в том, чтобы установить, в каком физическом состоянии находилось вещество до начала расширения Вселенной. Видимо, это было состояние чрезвычайно высокой плотности. Для описания явлений, происходящих при столь высокой плотности, современные фундаментальные физические теории, к сожалению, неприменимы. При таких условиях проявляются не только гравитационные, но и квантовые эффекты, характерные для процессов микромира, А теории, которая объединяла бы их, пока нет – ее предстоит создать.

Одно из предположений, следующих из концепции самоорганизации, заключается в том, что первоначальный сгусток материи возник из физического вакуума. Физический вакуум, как уже отмечалось, – своеобразная форма материи, способная при определенных условиях «рождать» вещественные частицы без нарушения законов сохранения материи и движения, Вселенная в широком смысле – это среда нашего обитания. Поэтому важно помнить: во Вселенной господствуют необратимые физические процессы, и она изменяется с течением времени, находится в постоянном развитии. Человек приступил к освоению космоса, вышел в открытое космическое пространство.

Наши свершения приобретают все больший размах, глобальные космические масштабы. И для того чтобы учесть их близкие и отдаленные последствия, те изменения, которые они могут внести в среду нашего обитания, мы должны изучать не только земные, но и космические явления и процессы.

Вселенная – это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития.

Вселенная в широком смысле – это среда нашего обитания. Важное значение практической деятельности человека имеет то обстоятельство, что во Вселенной господствуют необратимые физические процессы, что она изменяется с течением времени, находится в постоянном развитии. Человек приступил к освоению космоса, вышел в открытое космическое пространство.

Наши свершения приобретают все больший размах, глобальные и даже космические масштабы. И для того чтобы учесть их близкие и отдаленные последствия, те изменения, которые они могут внести в состояние среды нашего обитания, в том числе и космической, мы должны изучать не только земные явления и процессы, но и закономерности космического масштаба.

5. Галактики. Эволюции Галактик Галактикой называется большая система из звезд, межзвездного газа, пыли, темной материи и, возможно, темной энергии, связанная силами гравитационного взаимодействия. Количество звезд и размеры галактик могут быть различными. Как правило галактики содержат от нескольких миллионов до нескольких триллионов (1 000 000 000 000) звезд. Кроме обычных звезд и межзвездной среды галактики также содержат различные туманности. Размеры галактик от нескольких тысяч до нескольких сотен тысяч световых лет. А расстояние между галактиками достигает миллионов световых лет.

Около 90 % массы галактик приходится на долю темной материи и энергии. Природа этих невидимых компонентов пока не изучена. Существуют свидетельства того, что в центре многих галактик находятся сверхмассивные чёрные дыры. Пространство между галактиками практически не содержит вещества и имеет среднюю плотностью меньше одного атома на кубический метр. Предположительно, в видимой части вселенной находится около 100 млрд галактик.

По классификации, предложенной Хабблом, в 1925 году существуют несколько видов галактик:

эллиптические (E), линзообразные (S0), обычные спиральные (S), пересеченные спиральные (SB), неправильные (Ir).

Эллиптические галактики – класс галактик с четко выраженной сферической структурой и уменьшающейся к краям яркостью. Они сравнительно медленно вращаются, заметное вращение наблюдается только у галактик со значительным сжатием. В таких галактиках нет пылевой материи, которая в тех галактиках, в которых она имеется, видна как тёмные полосы на непрерывном фоне звёзд галактики. Поэтому внешне эллиптические галактики отличаются друг от друга в основном одной чертой – большим или меньшим сжатием.

Доля эллиптических галактик в общем числе галактик в наблюдаемой части вселенной – около 25 %.

Спиральные галактики названы так, потому что имеют внутри диска яркие рукава звёздного происхождения, которые почти логарифмически простираются из балджа (почти сферического утолщения в центре галактики).

Спиральные галактики имеют центральное сгущение и несколько спиральных ветвей, или рукавов, которые имеют голубоватый цвет, так как в них присутствует много молодых гигантских звезд. Эти звезды возбуждают свечение диффузных газовых туманностей, разбросанных вместе с пылевыми облаками вдоль спиральных ветвей. Диск спиральной галактики обычно окружён большим сфероидальным гало (светящееся кольцо вокруг объекта;

оптический феномен), состоящим из старых звёзд второго поколения. Все спиральные галактики вращаются со значительными скоростями, поэтому звезды, пыль и газы сосредоточены у них в узком диске. Обилие газовых и пылевых облаков и присутствие ярких голубых гигантов говорит об активных процессах звездообразования, происходящих в спиральных рукавах этих галактик.

Многие спиральные галактики имеют в центре перемычку (бар), от концов которой отходят спиральные рукава. Наша Галактика также относится к спиральным галактикам с перемычкой.

Линзообразные галактики - это промежуточный тип между спиральными и эллиптическими. В этих галактиках яркое основное тело – линза, окружено слабым ореолом. Иногда линза имеет вокруг себя кольцо.

Неправильные галактики – это галактики, которые не обнаруживают ни спиральной ни эллиптической структуры. Чаще всего такие галактики имеют хаотичную форму без ярко выраженного ядра и спиральных ветвей. В процентном отношении составляют одну четверть от всех галактик.

Большинство неправильных галактик в прошлом являлись спиральными или эллиптическими, но были деформированы гравитационными силами.

Эволюция галактик Образование галактик рассматривают как естественный этап эволюции Вселенной, происходящий под действием гравитационных сил. Повидимому, около 14 млрд лет назад в первичном веществе началось обособление протоскоплений («протос» от греческого – первый). В протоскоплениях в ходе разнообразных динамических процессов происходило выделение групп галактик. Многообразие форм галактик связано с разнообразием начальных условий образования галактик.

Сжатие галактики длится около 3 млрд лет. За это время происходит превращение газового облака в звездную систему. Звезды образуются путем гравитационного сжатия облаков газа. Когда в центре сжатого облака достигаются плотности и температуры, достаточные для эффективного протекания термоядерных реакций, рождается звезда. В недрах массивных звезд происходит термоядерный синтез химических элементов тяжелее гелия.

Эти элементы попадают в первичную водородно-гелиевую среду при взрывах звезд или при спокойном истечении вещества со звездами. Элементы тяжелее железа образуются при грандиозных взрывах сверхновых звезд. Таким образом, звезды первого поколения обогащают первичный газ химическими элементами, тяжелее гелия. Эти звезды наиболее старые и состоят из водорода, гелия и очень малой примеси тяжелых элементов. В звездах второго поколения примесь тяжелых элементов более заметная, так как они образуются из уже обогащенного тяжелыми элементами первичного газа.

Процесс рождения звезд идет при продолжающемся сжатии галактики, поэтому формирование звезд происходит все ближе к центру системы, и чем ближе к центру, тем больше должно быть в звездах тяжелых элементов. Этот вывод хорошо согласуется с данными о содержании химических элементов в звездах гало нашей Галактики и эллиптических галактик. Во вращающейся галактике звезды будущего гало образуются на более ранней стадии сжатия, когда вращение еще не повлияло на общую форму галактики. Свидетельствами этой эпохи в нашей Галактике являются шаровые звездные скопления.

Когда прекращается сжатие протогалактики, кинетическая энергия образовавшихся звезд диска равна энергии коллективного гравитационного взаимодействия. В это время, создаются условия для образования спиральной структуры, а рождение звезд происходит уже в спиральных ветвях, в которых газ достаточно плотный. Это звезды третьего поколения. К ним относится наше Солнце.

Запасы межзвездного газа постепенно истощаются, рождение звезд становится менее интенсивным. Через несколько миллиардов лет, когда будут исчерпаны все запасы газа, спиральная галактика превратится в линзообразную, состоящую из слабых красных звезд. Эллиптические галактики уже находятся на этой стадии: весь газ в них израсходован 10–15 млрд лет назад.

Возраст галактик равен примерно возрасту Вселенной. Одним из секретов астрономии остаётся вопрос о том, что из себя представляют ядра галактик.

Очень важным открытием явилось то, что некоторые ядра галактик активны.

Это открытие было неожиданным. Раньше считалось, что ядро галактики – это не больше чем скопление сотен миллионов звёзд. Оказалось что и оптическое и радиоизлучение некоторых галактических ядер может меняться за несколько месяцев. Это означает, что в течении короткого времени из ядер освобождается огромное количество энергии, в сотни раз превышающее то, которое освобождается при вспышке сверхновой. Такие ядра получили название «активных», а процессы происходящие в них «активность».

В1963 году были обнаружены объекты нового типа, находящиеся за приделами нашей галактики. Эти объекты имеют звездообразный вид. Со временем выяснили, что их светимость во много десятков раз превосходит светимость галактик! Самое удивительное то, что их яркость меняется.

Мощность их излучения в тысячи раз превосходит мощность излучения активных ядер. Эти объекты назвали квазарами. Сейчас считается что ядра некоторых галактик представляют собой квазары.

6. Эволюция звезд Внутренняя жизнь звезды регулируется воздействием двух сил: силы притяжения, которая противодействует звезде, удерживает ее, и силы, освобождающейся при происходящих в ядре ядерных реакциях. Она, наоборот, стремится “вытолкнуть” звезду в дальнее пространство. Во время стадий формирования плотная и сжатая звезда находится под сильным воздействием гравитации. В результате происходит сильное нагревание, температура достигает 10–20 миллионов градусов. Этого достаточно для начала ядерных реакций, в результате которых водород превращается в гелий.

Затем в течении длительного периода две силы уравновешивают друг друга, звезда находится в стабильном состоянии. Когда ядерное горючее ядра понемногу иссякает, звезда вступает в фазу нестабильности, две силы противоборствуют. Для звезды наступает критический момент, в действие вступают самые разные факторы – температура, плотность, химический состав.

На первое место выступает масса звезды, именно от нее зависит будущее этого небесного тела – или звезда вспыхнет, как сверхновая, или превратится в белого карлика, нейтронную звезду или в черную дыру.

Как иссякает водород.

Только очень крупные среди небесных тел (примерно в 80 раз превышающие массу Юпитера) становятся звездами, меньшие (примерно в 17 раз меньше Юпитера) становятся планетами. Есть и тела средней массы, они слишком крупные, чтобы относиться к классу планет, и слишком маленькие и холодные для того, что бы в их недрах происходили ядерные реакции, характерные для звезд.

Эти небесные тела темного цвета обладают слабой светимостью, их довольно сложно различить на небе. Они получили название “коричневые карлики”.

Итак, звезда формируется из облаков, состоящих из межзвездного газа.

Как уже отмечалось, довольно длительное время звезда пребывает в уравновешенном состоянии. Затем наступает период нестабильности.

Дальнейшая судьба звезды зависит от различных факторов. Рассмотрим гипотетическую звезду небольшого размера, масса которой составляет от 0,1 до 4 солнечных масс. Характерной чертой звезд, имеющих малую массу, является отсутствие конвекции во внутренних слоях, т.е. вещества, входящие в состав звезды, не смешиваются, как это происходит у звезд, обладающих большой массой.

Это означает, что, когда водород в ядре заканчивается, новых запасов этого элемента во внешних слоях нет. Водород, сгорая, превращается в гелий.

Понемногу ядро разогревается, поверхностные слои дестабилизируют собственную структуру, и звезда, как можно видеть по диаграмме Г-Р, медленно выходит из фазы Главной последовательности. В новой фазе плотность материи внутри звезды повышается, состав ядра “дегенерирует”, в результате появляется особая консистенция. Она отличается от нормальной материи.

Видоизменение материи. Когда материя видоизменяется, давление зависит только от плотности газов, а не от температуры.

На диаграмме Герцшпрунга – Ресселла (Г-Р) звезда сдвигается вправо, а затем вверх, приближаясь к области красных гигантов. Ее размеры значительно увеличиваются, и из-за этого температура внешних слоев падает. Диаметр красного гиганта может достигать сотни миллионов километров. Когда наше Солнце войдёт в эту фазу, оно “проглотит” или Меркурий и Венеру, а если не сможет захватить и Землю, то разогреет её до такой степени, что жизнь на нашей планете перестанет существовать.

За время эволюции звезды температура ее ядра повышается. Сначала происходят ядерные реакции, затем по достижении оптимальной температуры начинается плавление гелия. Когда это происходит, внезапное повышение температуры ядра вызывает вспышку, и звезда быстро перемещается в левую часть диаграммы Г-Р. Это так называемый “helium flash”. В это время ядро, содержащее гелий, сгорает вместе с водородом, который входит в состав оболочки, окружающей ядро. На диаграмме Г-Р эта стадия фиксируется продвижением вправо по горизонтальной линии.

Последние фазы эволюции При трансформации гелия в углерод ядро видоизменяется. Его температура повышается до тех пор (если звезда крупная), пока углерод не начнет гореть. Происходит новая вспышка. В любом случае во время последних фаз эволюции звезды отмечается значительная потеря ее массы. Это может происходить постепенно или резко, во время вспышки, когда внешние слои звезды лопаются, как большой пузырь. В последнем случае образуется планетарная туманность – оболочка сферической формы, распространяющаяся в космическом пространстве со скоростью в несколько десятков или даже сотен км/сек.

Конечная судьба звезды зависит от массы, оставшейся после всего происходящего в ней. Если она во время всех превращений и вспышек выбросила много материи и ее масса не превышает 1,44 солнечной массы, звезда превращается в белого карлика. Эта цифра носит название “лимит Чандра – секара” в честь пакистанского астрофизика Субрахманьяна Чандрасекара. Это максимальная масса звезды, при которой катастрофический конец может не состоятся из-за давления электронов в ядре.

После вспышки внешних слоев ядро звезды остается, и его поверхностная температура очень высока – порядка 100 000 К. Звезда двигается к левому краю диаграммы Г-Р и спускается вниз. Ее светимость уменьшается, так как уменьшаются размеры.

Звезда медленно доходит до зоны белых карликов. Это звезды небольшого диаметра (как наша Земля), но отличающиеся очень высокой плотностью, в полтора миллиона раз больше плотности воды. Кубический сантиметр вещества, из которого состоит белый карлик, на Земле весил бы около одной тонны!

Белый карлик представляет собой конечную стадию эволюции звезды, без вспышек. Она понемногу остывает.

Ученые полагают, что конец белого карлика проходит очень медленно, во всяком случае, с начала существования Вселенной, похоже, ни один белый карлик не пострадал от “термической смерти”.

Если же звезда крупная, и ее масса больше Солнца, она вспыхнет, как сверхновая. Во время вспышки звезда может разрушиться полностью или частично. В первом случае от нее останется облако газа с остаточными веществами звезды. Во втором – остается небесное тело высочайшей плотности

– нейтронная звезда или черная дыра.

7. Средства наблюдения объектов вселенной Все сведения о космических объектах приносят на Землю различные излучения – электромагнитные волны и потоки частиц. В XX в. родилась радиоволновая астрономия, которую дополняет нейтринная астрономия.

Первым вестником далеких миров был световой луч – электромагнитные волны в видимой части спектра излучения. Это не случайно: световое излучение человек воспринимает непосредственно – при помощи глаз. Для обнаружения светового излучения небесных тел применяются специальные приборы – телескопы. Иногда не совсем правильно говорят, что телескоп увеличивает звезды или приближает их. В действительности же телескоп – устройство для собирания света с помощью объектива – двояковыпуклой линзы или вогнутого зеркала. Простейшая труба Галилея собирала в 144 раза больше света, чем глаз человека. А сооруженный в 1974 г. в нашей стране на Северном Кавказе, вблизи станицы Зеленчукской, один из крупнейших в мире телескоп с поперечником зеркала в 6 м собирает света в миллион с лишним раз больше, чем глаз. Это очень сложное уникальное устройство. Состоит оно из деталей более 25 тыс. наименований. Труба телескопа длиной 24 м весит около 280 т.

Телескоп оснащен разнообразной высокочувствительной аппаратурой и комплексом электронных вычислительных систем для наблюдений в соответствии с заданной программой и для обработки полученных результатов.

В последнее время вступили в строй телескопы с диаметрами зеркал 8, 10 и 11 м. Современные телескопы снабжены спектрографами, с помощью которых изучается спектр излучения, а по нему определяется химический состав и температура источника излучения.

Как уже отмечалось, свет – не единственный вестник космических миров.

С появлением высокочувствительной радиоаппаратуры открылась возможность исследовать космическое излучение. Радионаблюдения Вселенной не зависят от времени суток и погодных условий. Источниками космического радиоизлучения являются объекты Вселенной, в которых протекают бурные физические процессы. Принцип действия радиотелескопа похож на принцип действия обычного телескопа. Но роль объектива, собирающего космическое излучение играют в радиотелескопе огромные антенны специальной формы.

Один из крупнейших отечественных радиотелескопов (РАТАН) построен в 40 км от 6-метрового оптического телескопа и вступил в строй в 1977 г. Его кольцевая антенна диаметром 600 м состоит из 895 алюминиевых щитовзеркал, каждый из которых может поворачиваться вокруг горизонтальной и вертикальной осей, что позволяет наводить радиотелескоп на разные участки звездного неба.

Еще одним вестником Вселенной являются инфракрасные лучи, расположенные в промежутке между радиоволнами и волнами видимого света.

Они обладают важным качеством: проходят сквозь космическую пыль и межзвездный газ. Человеческий глаз не воспринимает инфракрасное излучение, нечувствительны к нему и обычные фотопластинки. Поэтому при фотографировании космических объектов в инфракрасных лучах применяют специальные фотоматериалы и электронно-оптические преобразователи.

Из глубин Вселенной поступают еще три вида сигналов:

ультрафиолетовое, рентгеновское и гамма-лучи. Для данных видов коротковолнового излучения земная атмосфера является препятствием. Такое излучение стало доступным лишь при появлении ракетной и космической техники. С помощью прибора, установленного на борту высотных ракет удалось получить, например, ультрафиолетовый снимок Солнца.

С помощью рентгеновских телескопов, установленных на борту космических аппаратов, зарегистрировано рентгеновское излучение большого числа различных космических объектов, обнаружены межгалактический газ внутри скоплений галактик и рентгеновское свечение всего неба – своеобразный рентгеновский фон.

К многообещающим источникам космической информации можно отнести гамма-излучение. Энергия гамма-квантов значительно превосходит энергию фотонов видимого света. Для них Вселенная почти прозрачна. Они приходят к нам от весьма удаленных объектов и несут информацию о физических процессах в глубине Вселенной.

С развитием ядерной физики и физики элементарных частиц наметился еще один путь, ведущий к сокровенным тайнам Вселенной. Он связан с регистрацией космических нейтрино и лежит в основе нейтринной астрономии.

Отличительная особенность нейтрино состоит в том, что обладает чрезвычайно высокой проникающей способностью. Регистрируя нейтринный поток с помощью детекторов, можно получить информацию о термоядерных процессах, которые протекают в звездах и являются мощным источником энергии.

С появлением космической техники открылась новая возможность исследования Вселенной. Созданный уникальный телескоп-спутник «Хаббл»

позволил получить не только четкие изображения планет Солнечной системы, но и новые сведения о происходящих там процессах. На снимках, сделанных в 1996 г. с расстояния примерно в 100 млн.

км можно различить детали поверхности Марса размером не менее 25 км – такова разрешающая способность телескопа «Хаббл». Для сравнения следует отметить, что один из лучших наземных телескопов в мире, расположенный в обсерватории МаунтПаломар (США) позволяет рассмотреть детали на Марсе размером не менее 300–400 км. С помощью спутникового телескопа «Хаббл» удалось лучше рассмотреть кольца Сатурна и обнаружить кольцевые системы, украшающие Юпитер, Уран и Нептун. С поверхности Земли такие системы не видны – мешает замутненность атмосферы нашей планеты.

В настоящее время создается новый внеземной телескоп, который заменит «Хаббл» в 2006 г. Новый телескоп гораздо чувствительнее «Хаббла». Он сможет обнаружить в десятки раз более слабые объекты. Диаметр зеркала нового прибора равен 8 м. Для сравнения: зеркало телескопа «Хаббла» имеет диаметр 2,4 м и весит 826 кг. Предложенная новая конструкция зеркала весит всего 7 кг. В ней зеркальную поверхность образует слой золота, нанесенный на силиконовую пленку.

Ежедневная картина восхода Солнца вряд ли вызывает удивление. А можно ли наблюдать восход Земли? Оказывается, можно. Такую возможность представляют космические аппараты.

Долгое время Земля казалась человеку необъятной и безграничной.

Понадобились сотни, даже тысячи лет, чтобы разглядеть собственными глазами Землю из космоса, откуда представилась прекрасная возможность увидеть нашу планету всю, целиком, и откуда она больше не кажется нам необъятной и безграничной.

Таким образом, созданный во второй половине XX в. огромный арсенал средств астрономических наблюдений, наземных и комических, способствует дальнейшему успешному раскрытию тайн Вселенной.

8. Проблема поиска внеземных цивилизаций Изучению внеземных цивилизаций должно предшествовать установление той или иной формы связи с ними. В настоящее время наметилось несколько направлений поиска следов активности внеземных цивилизаций.

Во-первых, поиск следов астроинженерной деятельности внеземных цивилизаций. Это направление базируется на предположении, что технически развитые цивилизации рано или поздно должны перейти к преобразованию окружающего космического пространства (создание искусственных спутников, искусственной биосферы и др.), в частности для перехвата значительной части энергии звезды. Как показывают расчеты, излучение основной части таких астроинженерных сооружений должно быть сосредоточено в инфракрасной области спектра. Следовательно, задача обнаружения подобных внеземных цивилизаций должна начинаться с поиска локальных источников инфракрасного излучения или звезд с аномальным избытком инфракрасного излучения. Такие исследования в настоящее время ведутся. В результате было обнаружено несколько десятков инфракрасных источников, однако пока нет оснований связать какой-либо из них с внеземной цивилизацией.

Во-вторых, поиск следов посещения внеземных цивилизаций на Земле. В основе этого направления лежит допущение о том, что активность внеземных цивилизаций могла проявляться в историческом прошлом в виде посещения Земли, и такое посещение не могло не оставить следов в памятниках материальной или духовной культуры различных народов. Так проблема внеземных цивилизаций сближается с историей культуры, археологией, где также имеется немало «белых пятен», загадок, тайн и проблем. На этом пути немало возможностей для различного рода сенсаций – ошеломляющих «открытий», квазинаучных мифов о космических истоках отдельных культур (или их элементов); так, рассказом о космонавтах называют легенды о вознесении святых на небо. Необъяснимые пока постройки больших каменных сооружений также не доказывают их космического происхождения. Например, спекуляции такого рода вокруг гигантских каменных идолов на острове Пасхи были развеяны Туром Хейердалом: потомки древнего населения этого острова показали ему, как это делалось не только без вмешательства космонавтов, но и без всякой техники. В этом же ряду находится и гипотеза о том, что Тунгусский метеорит был не метеоритом или кометой, а космическим кораблем инопланетян. Такого рода гипотезы и предположения необходимо исследовать самым тщательным образом.

В-третьих, поиск сигналов от внеземных цивилизаций. Данная проблема в настоящее время формулируется прежде всего как проблема поиска искусственных сигналов в радио- и оптическом (например, остронаправленным лучом лазера) диапазонах. Наиболее вероятной является радиосвязь. Поэтому важнейшей задачей оказывается выбор оптимального диапазона волн для такой связи. Анализ показывает, что наиболее вероятны искусственные сигналы на волнах 21 см (радиолиния водорода), 18 см (радиолиния ОН), 1,35 см (радиолиния водяного пара) или же на волнах, скомбинированных из основной частоты с какой-либо математической константой (, е и др.).

Серьезный подход к поиску сигналов от внеземных цивилизаций требует создания постоянно действующей службы, охватывающей всю небесную сферу. Причем такая служба должна быть достаточно универсальной – рассчитанной на прием сигналов различного вида (импульсных, узкополосных и широкополосных).

Первые работы по поиску сигналов внеземных цивилизаций были выполнены в США в 1960 г. Исследовалось радиоизлучение ближайших звезд ( Кита и Эридана) на волне 21 см. В последующем (70–80-е г.) такие исследования проводились и в СССР. В ходе исследований были получены обнадеживающие результаты. Так, в 1977 г. в США (обсерватория Огайского университета) в процессе обзора неба на волне 21 см был зарегистрирован узкополосный сигнал, характеристики которого указывали на его внеземное и, вероятно, искусственное происхождение. Однако повторно этот сигнал зарегистрировать не удалось, и вопрос о его природе остался открытым. С 1972 г.

поиски в оптическом диапазоне проводились на орбитальных станциях.

Обсуждались проекты строительства многозеркальных телескопов на Земле и на Луне, гигантских космических радиотелескопов и др.

Поиск сигналов от внеземных цивилизаций – это одна сторона контакта с ними. Но существует и другая – сообщение таким цивилизациям о нашей, земной цивилизации. Поэтому наряду с поисками сигналов от космических цивилизаций предпринимались попытки направить послание внеземным цивилизациям. В 1974 г. с радиоастрономической обсерватории в Аресибо (Пуэрто-Рико) в сторону шарового скопления М-31, находящегося от Земли на расстоянии 24 тыс. световых лет, было направлено радиопослание, содержащее закодированный текст о жизни и цивилизации на Земле. Информационные сообщения также неоднократно помещались на космические аппараты, траектории которых обеспечивали им выход за пределы Солнечной системы.

Конечно, очень мало шансов на то, что эти послания когда-либо достигнут цели, но начинать с чего-то надо. Важно, что человечество не только серьезно зaдyмывaeтcя о контактах с разумными существами из других миров, но уже и оказывается способным налаживать такие контакты, пусть в самой, простейшей форме.

В последнее десятилетие среди ученых и философов все более преобладает мнение, что Человечество одиноко если не во всей Вселенной, то во всяком случае в нашей Галактике. Такое мнение влечет за собой важнейшие мировоззренческие выводы о значении и ценности земной цивилизации, ее достижений. Вполне возможно, что наша планета Земля является высшим «цветом» развития всей или, по крайней мере, огромной части Вселенной, в человечестве сконцентрированы все основные результаты, итоги саморазвития Мира, Природы. Это значит, что мы, люди, человечество, в огромной степени ответственны – не только за нашу планету, но и за развитие Вселенной в целом.

9. Солнечная система. Солнце Солнечная система – это 8 планет и более 63 их спутника, которые открываются все чаще, несколько десятков комет и большое количество астероидов. Все космические тела движутся по своим четким направленным траекториям вокруг Солнца, которое тяжелее в 1000 раз, чем все тела в солнечной системе вместе взятые.

Центром солнечной системы является Солнце – звезда, вокруг которой по орбитам обращаются планеты. Они не выделяют тепла и не светятся, а лишь отражают свет Солнца. В солнечной системе сейчас официально признано 8 планет. Вкратце по порядку удаленности от солнца перечислим их все. А сейчас несколько определений.

Планета – это небесное тело, которое должно удовлетворять четырем условиям:

1. тело должно обращаться вокруг звезды (например, вокруг Солнца);

2. тело должно обладать достаточной гравитацией, чтобы иметь сферическую или близкую к ней форму;

3. тело не должно иметь вблизи своей орбиты других крупных тел;

4. тело не должно быть звездой.

Звезда – это космическое тело, которое излучает свет и является мощным источником энергии. Это объясняется, во-первых, происходящими в нем термоядерными реакциями, а во-вторых, процессами гравитационного сжатия, в результате которых выделяется огромное количество энергии.

Спутники планет. В солнечную систему входят также Луна и естественные спутники других планет, которые есть у всех них, кроме Меркурия и Венеры.

Известно свыше 60 спутников. Большинство спутников внешних планет обнаружили, когда получили фотографии, сделанные автоматическими космическими аппаратами. Наименьший спутник Юпитера – Леда – в поперечнике всего 10 км.

Солнце – это звезда, без которой не могло бы существовать жизни на Земле. Она дает нам энергию и тепло. Согласно классификации звезд, Солнце – желтый карлик. Возраст около 5 млрд. лет. Имеет диаметр на экваторе равный 1 392 000 км, в 109 раз больше земного. Период вращения на экваторе – 25,4 дня и 34 дня у полюсов. Масса Солнца 2х10 в 27 степени тонн, примерно в 332950 раз больше массы Земли. Температура внутри ядра примерно 15 млн.

градусов Цельсия. Температура на поверхности около 5500 градусов Цельсия.

По химическому составу Солнце состоит из 75 % водорода, а из прочих 25 % элементов больше всего гелия. Теперь по порядку разберемся сколько планет вокруг солнца вращается, в солнечной системе и характеристики планет.

1. «Меркурий». Четыре внутренние планеты (ближайшие к Солнцу) – Меркурий, Венера, Земля и Марс – имеют твердую поверхность. Они меньше, чем четыре планеты гиганта. Меркурий движется быстрее других планет, обжигаясь солнечными лучами днем и замерзая ночью. Период обращения вокруг Солнца: 87,97 суток.

Диаметр на экваторе: 4878 км.

Период вращения (оборот вокруг оси): 58 дней.

Температура поверхности: 350 днем и -170 ночью.

Атмосфера: очень разреженная, гелий.

Сколько спутников: 0.

Главные спутники планеты: 0.

2. «Венера» больше похожа на Землю размерами и яркостью. Наблюдение за нею затруднено из-за окутывающих ее облаков. Поверхность – раскаленная каменистая пустыня. Период обращения вокруг Солнца: 224,7 суток.

Диаметр на экваторе: 12104 км.

Период вращения (оборот вокруг оси): 243 дня.

Температура поверхности: 480 градусов (средняя).

Атмосфера: плотная, в основном углекислый газ.

Сколько спутников: 0.

Главные спутники планеты: 0.

3. «Земля». По всей видимости, Земля сформировалась из газопылевого облака, как и другие планеты. Частички газа и пыли сталкиваясь, постепенно "растили" планету. Температура на поверхности достигла 5000 градусов Цельсия. Затем Земля остыла и покрылась твердой каменной корой. Но температура в недрах и по сей день довольно высока -4500 градусов. Горные породы в недрах расплавлены и при извержении вулканов выливаются на поверхность. Только на земле есть вода. Поэтому тут и существует жизнь. Она расположена сравнительно близко к Солнцу, чтоб получать необходимые тепло и свет, но достаточно далеко, чтоб не сгореть. Период обращения вокруг Солнца: 365,3 суток.

Диаметр на экваторе: 12756 км.

Период вращения планеты (оборот вокруг оси): 23 часа 56 мин.

Температура поверхности: 22 градуса (средняя).

Атмосфера: в основном азот и кислород.

Число спутников: 1.

Главные спутники планеты: Луна.

4. «Марс». Из-за сходства с Землей полагали, что здесь существует жизнь.

Но опустившийся на поверхность Марса космический аппарат признаков жизни не обнаружил. Это четвертая по порядку планета. Период обращения вокруг Солнца: 687 суток.

Диаметр планеты на экваторе: 6794 км.

Период вращения (оборот вокруг оси): 24 часа 37 мин.

Температура поверхности:

-23 градуса (средняя).

Атмосфера планеты: разреженная, в основном углекислый газ.

Сколько спутников: 2.

Главные спутники по порядку: Фобос, Деймос.

5. «Юпитер». Юпитер, Сатурн, Уран и Нептун состоят из водорода и других газов. Юпитер превосходит Землю более чем в 10 раз по диаметру, в 300 раз по массе и в 1300 раз по объему. Он более чем вдвое массивнее всех планет Солнечной системы вместе взятых. Сколько планете Юпитер нужно, чтобы стать звездой? Нужно его массу увеличить в 75 раз! Период обращения вокруг Солнца: 11 лет 314 суток.

Диаметр планеты на экваторе: 143884 км.

Период вращения (оборот вокруг оси): 9 часов 55 мин.

Температура поверхности планеты: –150 градусов (средняя).

Атмосфера: в основном водород и гелий.



Pages:   || 2 |
Похожие работы:

«ОТЧЕТ о результатах контрольного мероприятия «Проверка законности и результативности использования бюджетных средств, выделенных МБОУ «Средняя общеобразовательная школа №30» г. Курска за 2010-2013 годы и прошедший период 2014 года» (совместное контрольное мероприятие Контрольно-счетной палаты Курской области и Контрольно-счетной палаты города Курска) (утвержден председателем Контрольно-счетной палаты города Курска 20 июня 2014 года) 1. Основания для проведения контрольного мероприятия: план...»

«ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ Государственное бюджетное общеобразовательное учреждение города Москвы «Лицей № 1571» (ГБОУ Лицей № 1571) ул.Фомичевой, д.1, к.1, Москва, 125481 тел/факс (499) 492-35-71, тел. (499)492-35-11; ул.Свободы, д.81, к.1, Москва, 125481 тел. (495)495-62-77, (495)495-81-88; ИНН 7733126624/КПП 773301001 ОГРН 1037739302776 ОКПО 53817310 Email: lic1571@szouo.ru; http://www.lyc1571.mskobr.ru Дошкольное отделение «Почемучки», ул. Фомичевой дом 16 корпус 4 Информационно...»

«~тйживипг\ Ф Е Д Е РА Л ЬН О Е Г О С У Д А РС Т В Е Н Н О Е БЮ Д Ж ЕТН О Е О БРА ЗО ВА ТЕЛЬНО Е У Ч РЕ Ж Д Е Н И Е В Ы С Ш Е ГО П РО Ф Е С С И О Н А Л ЬН О ГО ОБРА ЗО ВА НИ Я «М О С К О В С К И Й ГО С У Д А РС Т В Е Н Н Ы Й У Н И В ЕРС И ТЕТ П У ТЕЙ С О О БЩ ЕН И Я » К аф едра «В ысш ая и вычислительная математика» Л.В. П угина Т ЕО РИ Я В ЕРО Я ТН О С Т Е Й И М А Т ЕМ А ТИ Ч ЕС К А Я СТАТИСТИКА Рекомендовано редакционно-издательским советом университета в качестве м етодических указаний для...»

«Управление Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Астраханской области Государственный доклад «О состоянии санитарно-эпидемиологического благополучия населения в Астраханской области в 2014 году» Астрахань 2015 Государственный доклад О состоянии санитарно-эпидемиологического благополучия населения в Астраханской области в 2014 году» О состоянии санитарно-эпидемиологического благополучия населения в Астраханской области в 2014 году:...»

«Мирзакарим Санакулович Норбеков Победи болезни силой духа. Практические приемы самооздоровления и омоложения Серия «Библиотека Норбекова (АСТ)» http://www.litres.ru/pages/biblio_book/?art=8685741 Мирзакарим Норбеков. Победи болезни силой духа. Практические приемы самооздоровления и омоложения: АСТ; Москва; 2015 ISBN 978-5-17-087668-6 Аннотация «Победителем во всем можно стать, лишь победив самого себя», – говорит Мирзакарим Норбеков, мастер науки побеждать. Многие из нас не знают своих сил и...»

«ИЗБИРАТЕЛЬНЫЙ КОДЕКС СВЕРДЛОВСКОЙ ОБЛАСТИ с изменениями и дополнениями по состоянию на декабрь 2015 года Практическое пособие в помощь организаторам и участникам выборов Принят Областной Думой Законодательного Собрания Свердловской области 23 апреля 2003 года Одобрен Палатой Представителей Законодательного Собрания Свердловской области 29 апреля 2003 года Демократические, свободные и периодические выборы в органы государственной власти и органы местного самоуправления являются высшим...»

«ВЕСТНИК МОРСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА Серия Судовождение Вып. 42/ УДК 656.61.052(066) Вестник Морского государственного университета. Серия: Судовождение. – Вып. 42/2010. – Владивосток : Мор. гос. ун-т, 2010. – 130 с.Редакционная коллегия: Лентарев А. А., д-р техн. наук, проф. (отв.ред.), Лобастов В. М., канд. техн. наук, проф. (отв. ред.), Завьялов В. В., д-р техн. наук, проф., Ермаков В.В., канд. юрид. наук, проф. Морской государственный университет ISBN 978-5-8343-0610имени адмирала...»

«Оглавление Стр. ПРЕДИСЛОВИЕ 1. ВЫБОР ТЕМЫ 2. СТРУКТУРИРОВАНИЕ СОДЕРЖАНИЯ 2.1. ВВЕДЕНИЕ 2.2. ПЕРВАЯ ГЛАВА. 2.2.1. Постановка проблемы 2.2.2. Обзор литературы 2.2.3. Теоретические изыскания 2.2.4. Завершение главы 2.3. ВТОРАЯ ГЛАВА 3.1. Планирование 3.2. Процедура 3.3. Результаты 3.4. Обсуждение 3.5. Выводы 2.4. ЗАКЛЮЧЕНИЕ 2.5. ЛИТЕРАТУРА 2.5. ПРИЛОЖЕНИЯ 3. ПРОБЛЕМЫ СТИЛЯ РАБОТЫ 4. ОФОРМЛЕНИЕ 5. ПОДГОТОВКА К ЗАЩИТЕ 6. ЗАЩИТА ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ ПРОЦЕДУРЫ. 2 Предисловие Уважаемые студенты!...»

«Марат Оспанкулов Денежная книга http://www.litres.ru/pages/biblio_book/?art=11285915 ISBN 978-5-4474-1703-1 Аннотация Вы хотите улучшить своё материальное положение? Вам надоело жить в долг? Вы ненавидите свою работу? Вы находитесь в финансовом тупике? Как только появляются у вас деньги тут же появляются пробелы требующие финансовых затрат? Вы перелопатили целую гору книг об успехе, о том как достичь богатства, но вы также бедны, вы разочаровались в бизнес-литературе? Тогда эта книга для вас....»

«КОНТРОЛЬНО-СЧЕТНАЯ ПАЛАТА ИРКУТСКОЙ ОБЛАСТИ ОТЧЕТ № 07/23 о результатах контрольного мероприятия «Проверка соблюдения требований законодательства при организации бюджетного процесса, использования бюджетных средств в муниципальном образовании «город Свирск» за 2011 год» 13 июля 2012 года г. Иркутск Рассмотрен на коллегии КСП (постановление от 13.07.2012 № 7(178)/2 -КСП) и утвержден распоряжением председателя КСП от 13.07.2012 № 71 -р Настоящий отчет подготовлен аудитором Контрольно-счетной...»

«Людмила Евгеньевна Улицкая Искренне ваш Шурик Текст предоставлен издательством http://www.litres.ru/pages/biblio_book/?art=120072 Искренне ваш Шурик: АСТ, Астрель; Москва; 2011 ISBN 978-5-271-38047-1 Аннотация Герой романа «Искренне ваш Шурик» – яркий персонаж в галерее портретов Людмилы Улицкой. Здесь, по словам автора, «локальная проблема взаимоотношений сына и матери, подчинение человека чувству долга и связанные с этим потери. Оттенки любви – эгоистической материнской, бескорыстной...»

«21 ноября 2011 года N 323-ФЗ РОССИЙСКАЯ ФЕДЕРАЦИЯ ФЕДЕРАЛЬНЫЙ ЗАКОН ОБ ОСНОВАХ ОХРАНЫ ЗДОРОВЬЯ ГРАЖДАН В РОССИЙСКОЙ ФЕДЕРАЦИИ Принят Государственной Думой 1 ноября 2011 года Одобрен Советом Федерации 9 ноября 2011 года Список изменяющих документов (в ред. Федеральных законов от 25.06.2012 N 89-ФЗ, от 25.06.2012 N 93-ФЗ, от 02.07.2013 N 167-ФЗ, от 02.07.2013 N 185-ФЗ, от 23.07.2013 N 205-ФЗ, от 27.09.2013 N 253-ФЗ, от 25.11.2013 N 317-ФЗ, от 28.12.2013 N 386-ФЗ, от 21.07.2014 N 205-ФЗ, от...»

«ЛИНГВОПЕРЕВОДЧЕСКИЙ АНАЛИЗ ТЕКСТА ПУБЛИЦИСТИЧЕСКОГО ЖАНРА НА МАТЕРИАЛЕ СТАТЬИ: «If You’re Going to San Francisco: Six Musical Venues Worth Checking out» Зайва Е.О Международный Институт Рынка Самара, Россия LINGUISTIC TEXT ANALYSISOF PUBLICISTIC GENRE ON THE MATERIAL OF THE ARTICLE «If You’re Going to San Francisco: Six Musical Venues Worth Checking out» Zaiva E.O International Market Institute Samara, Russia Оглавление Введение Детальный перевод текста Фоновый комментарий Анализ трансформаций...»

«ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ Г. НОВЫЙ УРЕНГОЙ МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ДОШКОЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ДЕТСКИЙ САД КОМБИНИРОВАННОГО ВИДА «РУСЛАН» Проект «Большая дорога маленького гражданина» г. Новый Уренгой Авторы проекта: Заведующий ДОУ – Б.А.Джемакулова Зам.зав. по ВМР – М.Н.Козлова Ст. воспитательМ.Б. Джемакулова Воспитатель – Т.Г.Андриеш Воспитатель -Т.А.Озова Воспитатель -Аргалева Г.Г. Воспитатель – Джемакулова М.Б. Оглавление 1.Введение 2.Реферативная часть...»

«Ольга Щеглова От: А. Породина ta.porodina@spbu.ru] Отправлено: 26 января 2015 г. 17:42 Кому: Rector Тема: FW: Re[2]: СПбГУ Вложения: 16-79.pdf; Для рассылки prilozhenie_№4-2015.doc; Для рассылки prilozhenie_N93-2015.doc; Для рассылки prilozhenie_Nte2-2015.doc; Для рассылки prilozhenie_N9l-2015.doc; Для рассылки prilozhenie_№5-2015.doc Здравствуйте, коллеги! Прошу зарегистрировать входящее письмо. С уважением, Анна ******************************* Anna Porodina Head of Academic Mobility...»

«ГЛОССАРИЙ терминов по вопросам инклюзивного образования А Адаптация (Adaptation) социальная активное приспособление человека или социальной группы к меняющимся социальным условиям Альтернативное помещение детей предусматривает заботу о ребенке со стороны родственников родителей ребенка, передачу ребенка на воспитание в другую семью усыновление или, в случае крайней необходимости, помещение ребенка в специальное учреждения в том случае, если родители не проявляют заботы о своем ребенке или она...»

«В. А. Федосов Русский язык в Венгрии Научные исследования Русский язык в Венгрии Памяти профессора Йожефа Крекича BIBLIOTHECA BALTOSLAVICA BUDAPESTIENSIS IV. REDIGIT ANDREAS ZOLTN В. А. ФЕДОСОВ Русский язык в Венгрии Научные исследования Tolsztoj Trsasg — Argumentum Budapest, 2015 В. А. ФЕДОСОВ Русский язык в Венгрии Научные исследования Tolsztoj Trsasg — Argumentum Budapest, 2015 A knyv megjelenst az Alaptvny a Kelets Kzp-eurpai Kutatsrt s Kpzsrt tmogatta A knyv illusztrlt vltozata...»

«Тим Гудмен Эндрю Карнеги. Делаем деньги! 15 уроков от самого богатого человека мира Серия «Успех на 100%» Издательский текст http://www.litres.ru/pages/biblio_book/?art=10019379 Эндрю Карнеги. Делаем деньги! 15 уроков от самого богатого человека мира: АСТ; М.; 2015 ISBN 978-5-17-090647-5 Аннотация Если мы по-настоящему чего-то захотим – то непременно это получим! Таков закон жизни. Ведь по словам одного из самых богатых людей мира, гениального предпринимателя, стального магната и филантропа...»

«42-й ВСЕРОССИЙСКИЙ ОБРАЗОВАТЕЛЬНЫЙ ФОРУМ ARFpoint.ru ТЕОРИЯ И ПРАКТИКА АНЕСТЕЗИИ И ИНТЕНСИВНОЙ ТЕРАПИИ В АКУШЕРСТВЕ И ГИНЕКОЛОГИИ КУРСК 10-11 декабря УЧАСТИЕ В ФОРУМЕ БЕСПЛАТНОЕ! ARFpoint.ru 1 ОРГАНИЗАЦИОННЫЙ КОМИТЕТ Газазян Марина Григорьевна Заведующая кафедрой акушерства и гинекологии ГБОУ ВПО КГМУ Министерства здравоохранения РФ, академик РАЕН, д.м.н, профессор, Заслуженный врач РФ (Курск) Крестинина Валентина Ивановна Главный врач ОБУЗ ОПЦ, Заслуженный врач РФ, почетный работник...»

«Игорь Романович Рызов Я всегда знаю, что сказать. Книгатренинг по успешным переговорам Серия «Top Business Awards» http://www.litres.ru/pages/biblio_book/?art=11953284 Игорь Рызов. Я всегда знаю, что сказать. Книга-тренинг по успешным переговорам: Эксмо; Москва; 2015 ISBN 978-5-699-82756-5 Аннотация Перед вами – интерактивная книга-тренинг по переговорам. В ее основе лежит сильная теоретическая база, которую отлично дополняют яркие, живые примеры и упражнения. Книга построена таким образом, что...»







 
2016 www.nauka.x-pdf.ru - «Бесплатная электронная библиотека - Книги, издания, публикации»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.